Type of Studentship: PhD
Type of Funding: Self funding
Details:
Computation-led materials design for heterogeneous catalytic applications
PhD Supervisor: Dr. Andrew J. Logsdail http://www.cardiff.ac.uk/people/view/481607-logsdail-andrew.
About the Scholarship:
Catalysis underpins our modern society: around 90% of all chemical processes use catalysts and the economic impact is estimated at a minimum of 30-40% global GDP. As an example, catalysis is integral to the societal transition from fossil-fuel dependence towards greener energy sources; however, fossil fuel usage continues to dominate industrial processes, and transportation, because of the lack of commercially viable alternatives. To overcome this challenge, we must develop understanding of the relevant catalytic processes for green chemistry, and open pathways for informed, improved catalyst design.
Proposal:
The project proposes to investigate the properties of multi-component, earth abundant transition metal oxides (TMOs) when applied to valuable industrial processes (e.g. Hydrogen production). In particular, focus will be on the properties of surface interfaces and defects, both intrinsic and extrinsic, and their effect on the reaction chemistry. The investigations will be pursued using state-of-the-art modelling techniques to accurately represent the reaction space for binary and ternary compounds. The knowledge gained will be validated against experimental work from our collaborators, and the outcomes used to design optimal conditions for synthesis and application of novel catalytic materials.
Research Environment and Training:
The student will be integrated into the group of Dr. Logsdail (https://logsdail.github.io), which is part of the Cardiff Catalysis Institute (CCI). The student will participate in appropriate training in catalysis and in high-performance computing (HPC). The student will receive direct training from Dr. Logsdail in simulation approaches, and will use state-of-the-art institutional (Hawk) and national (ARCHER) HPC computing facilities to perform simulations. As part of the broader CCI community, the student will have exposure to international leading figures in catalytic chemistry. Additionally, the student will participate in activities associated with the Cardiff University “Materials Research Network”, which spans multiple schools within the University. The student will also have access to the facilities and expertise of the EPSRC-funded UK Catalysis Hub, of which the School of Chemistry is a key participant.
How to Apply:
Applicants should apply to the Doctor of Philosophy in Chemistry with a start date of 2020/2021.
In the research proposal section of your application, please specify the project title and supervisors of this project and copy the project description in the text box provided. In the funding section, please select the ‘self-funding’ option and specify that you are applying for the Computation-led materials design for heterogeneous catalytic applications project.
Academic criteria: A minimum of 2.2 B.Sc or equivalent will be considered for PhD study.
If English is not your first language that you must fulfil our English Language criteria before the start of your studies. Details of accepted English Language qualifications for admissions can be found here https://www.cardiff.ac.uk/study/international/english-language-requirements/postgraduate
Funding Notes
This PhD post is open to self funded Home, EU and International students.
[2] Logsdail et al., Phys. Chem. Chem. Phys. (2016), 18, 28648
[3] Buckeridge, Logsdail et al., Chem. Mater. (2015), 27, 3844